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What do we know about 

metabolite concentrations? 3 

Bennet, 2009 

 



Metabolite concentrations vary significantly 

within cells 

Ã GC-MS enables high throughput measurement of hundreds of metabolite levels  
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Bennet, 2009 

100nM  

(10 molecules per cell) 

100mM  

(10,000,000 molecules per cell) 



Why study metabolite concentrations 

 

Ã From a Basic Science perspective ð what factors determine 

metabolite concentrations? 

 

Ã Predicting metabolite concentrations would be highly beneficial 

for Metabolic Engineering 
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Theoretical background ð 

thermodynamics and metabolites 6 



Thermodynamics binds metabolite 

concentrations and reactions directionality 

 

 

 

 

 

 

Ä The thermodynamic driving force is defined as -ЎὋ 

 

Ä The 2nd law of thermodynamics:  

The thermodynamic driving force must be positive for flux 

carrying reactions 

 

 

 

 

 

Б■▫▌ὖ

Б■▫▌Ὓ
 ЎὋ ЎὋ ὙὝ 

Standard Gibbs energy 
Ratio of product to 

substrate concentrations 
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ЎὋ  estimates using the Group 

Contribution Method (GCM) 

Ã Group contribution (GCM) - ЎὋ  as a linear sum of 

group formation energy (Alberty, 2003) 

Ä learned via a linear regression model 
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Previous computational work 9 



Previous works have attempted to explain variation in metabolite 

concentrations based on thermodynamic considerations 

Ã TMFA  (Henry and Hatzimanikatis, 2007):  

find a flux distribution (ὺᴆ) and metabolite concentrations (ὧᴆ ) 
that satisfy the 2nd law of thermodynamics : 

Ä 3ẗὺᴆ π    Mass balance 

Ä ὺЎὋ  24Ὓ ϽÌÎὧᴆ π   ὺ π Thermodynamic constraint 

Ä Ã ὧᴆ Ã    Concentration bounds 

Ä Ö ὺᴆ Ö    Flux bounds 

 

Ã The thermodynamic constraint is non-linear: 

Ä Using ÌÎὧᴆ as variables 

Ä Adding booleans 

Č can be solved as Mixed-Integer Linear Programming 
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The 2nd law of thermodynamics per-se is insufficient for explaining 

observed metabolite concentrations 
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Thermodynamics and enzymes 12 



ЎὋ  estimates using GERALS 
13 

Ã In this work we use: Gibbs Energy of Reaction 

Approximation using Layered decomposition 

(GERALD) (Noor, 2012) 

ÄUses measured ЎὋ   

 

ÄòLeave one outó validation 

showed an overall 

reduction of 20% in  

estimation error  

 



Estimated enzyme levels as a function of ЎὋ 

Ã Flux force relationship:  

The ratio between a reactionõs back and forward fluxes is determined by 

the reaction thermodynamic driving force:       

ὩЎȾ   

Ã Therefore, the net rate can be written as: 

  
 

Č The enzyme concentration (E) required to catalyze flux (v) can be estimated 

as: 

 

 

 

Ã Enzyme concentration exponentially rises when ЎὋ approaches zero 
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An inverse relation exists between enzyme 

levels and metabolite concentrations 
15 

 

Enzyme levels 
Thermodynamic 

driving force 

Metabolite 

concentrations 



Metabolic tug of war (mTOW) 16 



We hypothesize that two additional physiological factors should 

be accounted for in explaining metabolite concentrations 
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Å Space restriction 

Å High cost of production and 

maintenance 

Å Limited intracellular solvent capacity 

(Schuster and Heinrich, 1991) 

Å Osmotic pressure 

Å Cross-talk between pathways due to 

promiscuous enzymes 



Tug-of-War between minimizing metabolite 

and enzyme levels 

A toy example of a linear pathway:  
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Many reactions close to 

chemical equilibrium, 

requiring too high 

enzyme levels 

Too high metabolite 

concentrations 



 Metabolic tug-of-war (mTOW) 

Ã Goal: identify the most likely steady state intracellular 

metabolite concentrations in a bacteria 

Ã Input:  

Ä A metabolic network - E. coli (Feist, 2007), C. acetobutylicum (Lee, 2008)  

Ä Reaction standard Gibbs energy obtained from GERALD  

 

 

 

Ã Output: Likely metabolite concentrations enabling low total 

metabolite and enzyme levels 
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mTOW formulation and 

implementation 20 



mTOW formulation 

ἵἱἶἱἵἱὂἭ

ὧᴆȟὺᴆ
ὓὧ

ȢȢ

ẗ Ὁὺȟὧᴆ

ᶰ

 

s.t. 

3ẗὺᴆ π      Mass balance 

ὺ ЎὋ  24Ὓ ϽÌÎὧᴆ π ὺ π᷈  Ὦɴ Ὑ  Thermodynamic constraint 

Ã ὧᴆ Ã     Concentration bounds 

Ö ὺᴆ Ö      Flux bounds 

 

Ã mTOW formulation is non-convex, making the direct solving 

computationally intractable for large-scale networks 
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mixed integer 

non convex 

metabolite enzyme 



mTOWõs implementation using a 

heuristic approach 

Ã Solve a combination of quadratic optimizations  

Ã An approximated calculations for both optimization objectives: 

ÄMetabolite: using log(concentrations) as done in TMFA 

ὓὧ ÌÎ
ὧ

Ã
  

 

ÄEnzyme: using proxy function which panelize reactions 

according to their thermodynamic driving force and flux rate 

Ὁὧȟὺ

Њ
ЎὋ

ὙὝ


ὺϽ
ЎὋ

ὙὝ


ЎὋ

ὙὝ


π 
ЎὋ

ὙὝ
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Quantitative estimates of enzyme 

approximation 
For a 

thermodynamic 

driving force of 

ЎὋ τὙὝ, the 

required enzyme 

mass fraction is 

0.2%, which is 

about the average 

enzyme levels in E. 

coli 
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mTOW predictions 24 



To validate against experimental 

data we chose a single solution per 

media: 

Ã minimal total deviation from minimal 

values of both objectives 

 

Ã mTOW predicts the concentration of 

507, 412 and 412 metabolites in 

glucose, acetate and glycerol media, 

respectively 

 
 

 

 

 

 

 

 

 

 

 

 

mTOWõs Pareto-optimal solutions 
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mTOWõs predicted concentrations are 

correlated with measured ones  
26 

 Pearson 

correlation 

Aerobic 

Glucose 

  

Aerobic 

Acetate 

Aerobic 

Glycerol 

Anaerobic 

Glucose 

 

mTOW 0.59  

ὴ ρπ  

0.61  

ὴ ρπ  

0.55 
ὴ ρπ  

0.64 
ὴ ρπ  

Quite strikingly, the Pearson correlation between concentration measurements 

made by various labs (Ishii et al from 2007 vs. Bennett et al) is only  

R = 0.62 (p-value of 10-4; 31 metabolites) 

Ã Experimentally validated mTOWõs predictions utilizing: 

ÄAerobic conditions measurements (Bennet, 2009)  

Ä 56 absolute concentrations in E. coli under anaerobic conditions 

we measured using LC/MS 



Only the dual physiological considerations 

result in highest correlations 
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mTOWõs predicted concentrations 

in C. acetobutylicum  

Ã Predicted concentration on two growth phases: 

Ä Acidogenesis: exponential growth and high rates of acid secretion 

Ä Solventogenesis: stationary phase with high secretion rates of solvents 

(acetone and butanol)  

 

Ã mTOW predicts the concentration of 206 and 217 metabolites in 

acidogenesis and solventogenesis, respectively  

 

Ã The measured (Amador-Noguez, 2010) and predicted concentrations 

correlated well: 

Ä Acidogenesis: Pearson R = 0.46; p = 10-4 

Ä Solventogenesis: Pearson R = 0.45; p = 10-3  
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Integrating mTOW with chemical 

properties-based concentration prediction 

Ã òHydrophobicity and Charge Shape Cellular Metabolite 

Concentrationsó (Bar-Even, 2011) 

Ã The integration of both approaches significantly improve upon 

each method independently  
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  Aerobic 

Glucose 

  

Aerobic 

Acetate 

Aerobic 

Glycerol 

Chemical properties 0.57  

ὴ ρπ  

0.41 

ὴ ρπ  

0.47 

ὴ ρπ  

mTOW 0.59  

ὴ ρπ  

0.61  

ὴ ρπ  

0.55 

ὴ ρπ  

mTOW , controlling for 

chemical properties  

0.49 

ὴ ρπ  

0.57 

ὴ ρπ  

0.51 

ὴ ρπ  

Integrating mTOW  and 

chemical properties prediction  

0.74 
Ἰ  

0.6  

Ἰ  

0.58 
Ἰ  



mTOWõs predicted versus measured metabolite 

concentrations under minimal glucose medium 
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