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A FEW QUESTIONS…

� What is the difference between eukaryote metabolism 

to prokaryote metabolism?

� What is the difference between the metabolism of a 

multi-cell organism and the metabolism of a uni-cell 

organism. organism. 

� What about cancer metabolism?

� Why should we nonetheless study human metabolism?
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MBA – MODEL BUILDING ALGORITHM ☺☺☺☺

Input: A. A general (human) model. 
B. Tissue Core (TC) – an initial set of tissue-specific 
reactions composed from the different data sources. The 
TC is composed of two conceptually different sets of 
reactions:  TC1 (known biochemical pathway data) and 
the TC2 (omics data) with high and moderate reliability 
levels, respectively. 

Observation: the TC is not a viable/consistent model. Observation: the TC is not a viable/consistent model. 
Output: additional tissue-specific reactions that enable the 

activation of the TC, and together with the TC compose 
the tissue-specific model.  

� The algorithm starts from a global set of reactions (e.g., 
in our case, from the human model) and attempts to 
eliminate each of the reactions that      TC, without 
disrupting the activation of the TC (i.e. a full activation of 
the TC1 and a partial activation of the TC2). 

� The algorithm halts after all the potentially removable 
reactions have been scanned.   
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ONE PICTURE IS WORTH..
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MBA ALGORITHM (II)

� The scanning order is random. It effects the 

resulting set, such that the output varies 

accordingly. Therefore the algorithm is 

executed with (1000) different, random 

elimination orders (each run results in a viable elimination orders (each run results in a viable 

candidate model). 

� Aggregative model – a model built from 

considering the essentiality results across all 

runs, by incrementally adding the most 

essential reactions until a viable model is 

obtained (the  TC1 and the TC2 can be fully and 

a partially activated, respectively). 5



SPEEDUP TECHNIQUES

� The time complexity of the naïve algorithm is 
computationally prohibitive. 

� Acceleration techniques were implemented to 
circumvent this hurdle:

� On the TC side: A recursive procedure aiming at 
activating multiple TC reactions together in the same activating multiple TC reactions together in the same 
LP problem, instead of each one at a time. 

� On the elimination side: In each attempt to eliminate 
a reaction set we examine whether the TC is still 
active. During that process we account for other 
potentially removable reactions that were inactive 
during the activation of the TC, and remove them as a 
set. 6



APPLYING MBA TO BUILD A LIVER

MODEL

�The liver is the main metabolic organ in the human body

�Involved in many important  clinical conditions (e.g., 

obesity, diabetes, fatty liver,  alcoholism etc.).

�The development of bioartificial liver (BAL) devices. 

Drug discovery and development.�Drug discovery and development.

�Because its there…
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LIVER TISSUE-SPECIFIC DATA SOURCES

Tissue specific reactions are inferred from

� Transcriptomic data [1]

� Proteomic data [2,4,5]

� Metabolic data [3]

� Phenotypic data[6]

� Literature-based knowledge[7].� Literature-based knowledge[7].

A reaction is considered tissue specific only if it is inferred from 
at least two datasets.

1. Shmueli et al, 2003.

2. He, F., Human Liver Proteome Project: Plan, Progress, and Perspectives. Molecular & Cellular Proteomics 4 (12), 1841-1848 
(2005).

3. Wishart, D.S. et al. HMDB: the Human Metabolome Database. Nucleic Acids  Res. 35, D521–D526 (2007).

4. Yan, Q. & Sadee, W. Human membrane transporter database: a Web-accessible relational database for drug transport 
studies and pharmacogenomics. AAPS PharmSci 2, E20 (2000).

5. Saier, M.H., Jr., Tran, C.V. & Barabote, R.D. TCDB: the Transporter Classification Database for membrane transport protein 
analyses and information. Nucleic Acids Res. 34, D181–D186 (2006).

6. McKusick, V.A. Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

7. Karl Walter Bock, W. Gerok, S. Matern. (1991) Hepatic metabolism and disposition of endo- and xenobiotics. Germany: 
Kluwer Academic Publishers. 
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VALIDATION I: CONSISTENCY OF THE

RESULTING MODELS

� For 76% of the reactions the algorithm provides a 

constant prediction regardless of the scanning order. 
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VALIDATION II: PREDICTION OF MISSING

CORE DATA

� The modeling process was repeated in a standard cross 

validation process 5 times, such that each time one of 

the datasets was omitted from the construction stage, 

and the model’s prediction ability vs. the missing set was 

evaluated.evaluated.

� The TC (TC=TC2) was formed from reactions testified by 

at least two of the remaining input sources. 

� The evaluation was performed using the aggregative 

model described beforehand.
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  TYPICAL MODEL VS. INITIAL MODEL

Resulting Model

~1200 reactions 

Initial Human Generic 

Model

3742 reaction 

2766 metabolites

1905 genes .
~1200 reactions 

~1200 metabolites

~1000 genes

1905 genes .

Tissue Core (TC)

~700 reactions

~850 metabolites 

~700 genes
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VALIDATION II: PREDICTION OF

MISSING CORE DATA
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  GENOME-SCALE METABOLIC LIVER

MODEL

Initial Human Generic 

Model

3742 reaction 

2766 metabolites

1905 genes 

100 pathways

Resulting Model

2056 reactions
100 pathways

2056 reactions

1844 metabolites

1473 genes

89 pathways
TC1

1042 reactions

1221 metabolites 

1044 genes

35 pathways

TC2

256 reactions

486 metabolites 

301 genes

36 pathways
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VALIDATION III: MODEL FUNCTIONALITY

� The capacity of the model to carry out hepatic metabolic functions 

was assessed by simulating different metabolic scenarios:

� Gluconeogenesis (i.e. the synthesis of glucose from glucogenic 

amino acids, lactate or glycerol) 

� Glycogenolysis (i.e. the breakdown of glycogen into glucose) 

� Glycogenesis (i.e. the formation of glycogen from glucose)� Glycogenesis (i.e. the formation of glycogen from glucose)

� Cholesterol synthesis 

� Urea production.

� It is important to emphasize that even though the major hepatic 

metabolic pathways were already included in the TC it is not trivial 

that the model would have the capacity to perform more complex 

functions that involve the integration of several metabolic 

pathways.  
14



VALIDATION IV

PREDICTING IN-VITRO FLUX MEASUREMENTS

� Metabolic fluxes were measured in *rat cells in four conditions 
[1]:  

� Low-insulin preconditioning (L):

� plasma (LP)

� plasma+ amino acids (LPA)

� High-insulin preconditioning (H):High-insulin preconditioning (H):

� plasma (HP)

� plasma+ amino acids (HPA)

� The measured fluxes include:
� 22 exchange fluxes (uptake of metabolites)

� 20 inner fluxes.

� Both the human generic and the liver models were constrained 
using QP to depict the four metabolic states. 

*Rat cells are the major component of bioartificial liver (BAL) devices.

1. Chan C, Berthiaume F, Lee K, Yarmush ML. Metabolic flux analysis of cultured hepatocytes exposed to 
plasma. Biotechnol Bioeng 81(1), 33-49 (2003).
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FLUX PREDICTIONS

� ROC curve of predicting increasing fluxes:
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FLUX PREDICTIONS

� ROC curve of predicting decreasing fluxes: 
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EXCHANGE FLUX PREDICTIONS: 

� ROC curve of predicting increasing fluxes (exchange 
fluxes): 
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EXCHANGE FLUX PREDICTIONS: 

� ROC curve of predicting increasing fluxes (exchange 
fluxes): 
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EXCHANGE FLUX PREDICTIONS: 

� ROC curve of predicting decreasing fluxes (exchange 
fluxes): 
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INNER FLUX PREDICTIONS: 
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INNER FLUX PREDICTIONS: 

� ROC curve of predicting decreasing fluxes (inner 
fluxes):
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CONCLUSIONS AND FURTHER WORK

� Building and integrating tissue-specific models into a 

comprehensive in-silico model of human metabolism. 

� Utilizing the model(s) to depict metabolic disorders and 

further investigate them. 

� Apply the algorithm outside the scope of tissue-specific � Apply the algorithm outside the scope of tissue-specific 

metabolism (e.g., given a metabolic archetype of 

bacterial metabolism,  generating a model of specific 

bacteria species). 
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