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FSEOF - Flux Scanning based on Enforced
Objective Flux

The computational approach:
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3. Apply a n-steps procedure maximizing the
biomass production while producing the
initial lycopen production + n-th of the
difference between the initial and maximal
lycopen flux

4. Search for reactions that their final flux is
higher than their initial flux



Identifying gene amplification targets

» 35 reactions were identified as initial gene amplification targets

» Constraint-based flux analysis does not give a unique flux distribution and

therefore FVA was applied
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Identifying gene amplification targets (2)

* The fluxes to G3P and the lycopene
biosynthetic pathway should be

increased

* The flux to acetyl-CoA decreased
and was redirected to DXYL5P

Gene Enzyme
acnAB Aconitase
alt4 Citrate (CIT) synthase
fumAR Fumarase
icdA4° Isocitrate (ICIT) dehydrogenase (NADF)
mdh®© Malate (MAL) dehydrogenase
sdhABCD Succinate (SUC) dehydrogenase
sucCD Succinyl-CoA (SUCOAS) synthetase (ADP-forming)
sucAB 2-Oxoglutarate (AKG) dehydrogenase
sadhABCD Succinate dehydrogenase
dxr 1-Deoxy-p-xylulose 5-phosphate reductoisomerase
dxs® 1-Deoxyxylulose-5-phosphate synthase
idi® Isopentenyl diphosphate (IPDF) isomerase
ispA® Geranyltranstransferase/dimethylallyltranstransferase
ispD 4-Diphosphocytidyl-2C-methyl-p-erythritol synthase
ispE 4-Diphosphocytidyl-2-C-methylerythritol kinase
ispF 2C-Methyl-p-erythritol 2,4-cyclodiphosphate synthase
ispli 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase
ispH 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
ot Geranylgeranyl pyrophosphate (GGPP) synthase
crtB Fhytoene (PHYTO) synthetase
crtd FPhytoene dehydrogenase
fhaAd® Fructose-bisphosphate (FBP) aldolase
pfkAB? FPhosphofructokinase
pai” Glucose-6-phosphate (G6F) isomerase
tpid™* Triose-phosphate isomerase
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Identifying gene knockout targets
Applying MOMA to identify single and double gene KOs
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Experimental validation
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Summary and Limitations

» FSEOF allows the in silico identification of fluxes to be
amplified for the enhanced production of desired
bioproduct.

» Not all targets predicted by FESOF resulted in enhanced
production due to model limitations

» Perhaps applying a sampling technique would help to
improve the model’s predictions

» Additional validation of non-intuitive gene amplification
targets is required
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