

In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production

Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim and Han Min Woo

Applied and environmental Microbiology

May 2010

The objective – Improving the yield of bioproducts

Identif maximize v_{biochemical} (OptReg) subject to $MO = v_{\text{biomass}} - \varepsilon \cdot \sum_{j} v_{j} = (v_{\text{atp_maint}} \cdot \lambda_{atp}) + (0.01.v_{\text{biomass}}^{\text{max}} \lambda_{bio})$ $+ \sum_{j} (z_{U,j}^{k} \cdot v_{j}^{\text{max}} + z_{L,j}^{k} \cdot v_{j}^{\text{min}})$ Identif $+\sum_{j} \left[(v_{j}^{\max} \cdot z_{U,j}^{d}) + [(v_{j,L}^{0} \cdot (1 - C) + v_{j}^{\min} \cdot (C)] \cdot (q_{U,j}^{d} - z_{U}^{d}) \right]$ **difficul** $+(q_{Lj}^d) \cdot (v_j^{\min})] + \sum_i [(q_{Uj}^U, v_j^{\max})]$ **G** + $(v_j^{\min} \cdot z_{Lj}^u) + [(v_{j,0}^u \cdot (1 - C))]$ $\mathsf{CC} + v_j^{\max} \cdot (C)] \cdot (q_{L,j}^u - z_{L,j}^u)],$ lt 2. an $\sum_{i=1}^{M} S_{ij}v_j = 0, \quad \forall i \in \mathbb{N},$ $v_{\rm atp} \ge v_{\rm atp_maint}$, Availal $v_{\text{biomass}} \ge (0.01) \cdot v_{\text{biomass}}^{\text{max}}, v_{\text{glc}} = 10 \,\text{mmol/gDW} \cdot h,$ $v_j \leq v_i^{\max} \cdot y_i^k, \quad \forall j \in \mathbf{M},$ Ι. $C \begin{cases} v_j \ge v_j^{\min} \cdot y_j^k, & \forall j \in \mathsf{M}, \\ v_j^{\min} \le v_j \le [(v_{j,L}^0) \cdot (1-C) + (v_j^{\min}) \cdot (C)] \cdot (1-y_j^d) + v_j^{\max} \cdot y_j^d, \end{cases}$ 2. $\forall j \in M$,

$$\begin{bmatrix} (u_{j,U}^{0}) \cdot (1-C) + (v_{j}^{\max}) \cdot (C) \end{bmatrix} \cdot (1-y_{j}^{\mu}) + v_{j}^{\min} \cdot y_{j}^{\mu} \leqslant v_{j} \leqslant v_{j}^{\max}, \\ \forall j \in M, \\ (1-y_{j}^{k}) + (1-y_{j}^{\ell}) + (1-y_{j}^{\mu}) \leqslant 1, \quad \forall j \in M, \\ y_{j}^{k} \in \{0,1\}; \quad y_{j}^{d} \in \{0,1\}; \quad y_{j}^{\mu} \in \{0,1\}; \quad y_{j}^{\mu} \in \{0,1\}, \quad \forall j \in M, \\ \sum_{j} [(1-y_{j}^{k}) + (1-y_{j}^{\mu}) + (1-y_{j}^{\mu})] \leqslant L \\ y_{j}^{k} = y_{j+1}^{k}, \quad y_{j}^{d} + y_{j+1}^{k} \geqslant 1, \quad y_{j}^{\mu} + y_{j+1}^{\mu} \geqslant 1, \quad \forall j \in M_{rev}, \\ \sum_{l=1}^{N} \lambda_{l} S_{l,l} + d_{U,j}^{k} + d_{L,j}^{k} + d_{U,j}^{l} + d_{L,j}^{l} + d_{U,j}^{u} + d_{L,j}^{\mu} > c, \\ \forall j \in M, \ j \neq atp, \ biomass, \\ \end{bmatrix}$$

$$\begin{bmatrix} \sum_{i=1}^{N} \lambda_{i} S_{i,kip} + d_{U,atp}^{k} + d_{L,atp}^{k} + d_{U,atp}^{l} + d_{L,atp}^{l} + d_{L,biomass}^{l} + d_{L,biomass}^{l} + d_{L,biomass}^{l} + d_{L,biomass}^{l} + d_{L,biomass}^{l} + d_{L,atp}^{l} + d_{L,atp}^{l}$$

FSEOF – **F**lux **S**canning based on **E**nforced **O**bjective **F**lux

The computational approach:

- Start from an initial flux distribution obtained under maximum biomass production and an initial (measured) lycopen production
- 2. Calculate the theoretical maximum yield
- 3. Apply a n-steps procedure maximizing the biomass production while producing the initial lycopen production + *n*-th of the difference between the initial and maximal lycopen flux
- 4. Search for reactions that their final flux is higher than their initial flux

Identifying gene amplification targets

- > 35 reactions were identified as initial gene amplification targets
- Constraint-based flux analysis does not give a unique flux distribution and therefore FVA was applied

 The fluxes to G3P and the lycopene biosynthetic pathway should be increased

• The flux to acetyl-CoA decreased and was redirected to DXYL5P

Gene	Enzyme
acnAB	Aconitase
gltA	Citrate (CIT) synthase
fumAB	Fumarase
icdA ^a	Isocitrate (ICIT) dehydrogenase (NADP)
mdh ^{a, c}	Malate (MAL) dehydrogenase
sdhABCD	Succinate (SUC) dehydrogenase
<i>sucCD</i>	Succinyl-CoA (SUCOAS) synthetase (ADP-forming)
sucAB	2-Oxoglutarate (AKG) dehydrogenase
sdhABCD	Succinate dehydrogenase
dxr	1-Deoxy-D-xylulose 5-phosphate reductoisomerase
dxs ^c	1-Deoxyxylulose-5-phosphate synthase
idi ^a	Isopentenyl diphosphate (IPDP) isomerase
ispA ^a	Geranyltranstransferase/dimethylallyltranstransferase
<i>ispD</i>	4-Diphosphocytidyl-2C-methyl-D-erythritol synthase
ispE	4-Diphosphocytidyl-2-C-methylerythritol kinase
ispF	2C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase
ispG	1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase
ispH	1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
crtE	Geranylgeranyl pyrophosphate (GGPP) synthase
crtB	Phytoene (PHYTO) synthetase
crtI	Phytoene dehydrogenase
fbaA ^a	Fructose-bisphosphate (FBP) aldolase
$pfkAB^{a}$	Phosphofructokinase
pgi ^a	Glucose-6-phosphate (G6P) isomerase
tpiA ^{a,c}	Triose-phosphate isomerase

Identifying gene knockout targets

Applying MOMA to identify single and double gene KOs

Experimental validation

Summary and Limitations

- FSEOF allows the *in silico* identification of fluxes to be amplified for the enhanced production of desired bioproduct.
- Not all targets predicted by FESOF resulted in enhanced production due to model limitations
- Perhaps applying a sampling technique would help to improve the model's predictions
- Additional validation of non-intuitive gene amplification targets is required

Questions?

