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Reconstructions statistics

A Over 50 genome-scale metabolic reconstructions have been
published A =0
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Contextualization of high -throughput data

A Metabolic reconstruction, as a framework on which other data
types can be overlaid, serves as powerful tool for contextualizing
high-throughput data

[ imposing constraints based on experimental dataset of. gene & protein
expression data, C13 flux data, high performance liquid chromatography

[ physiological states can directly be compared with in silico phenotypes:
growth on a given media, gene essentiality data

[ multiple high -throughput data types can be analyzed in concert dgiving
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Guidance of metabolic engineering

A Selectively alter cell metabolism to improve a targeted cellular

function
[ Increasing production of value -added chemicals

[ Increasing respiration rate of G. sulfurreducens predominant metal -
reducing bacteria dbioremedation capabilities

[ Scale-up for bulk production of a vaccine against the pathogen,
Neisseria meningitides

A Metabolic GENRES are uniquely capable of predicting secondary
effects of a given metabolic perturbation




Ensemble modeling for strain development
of L-lysine-producing Escherichia coli (contador et at)

A In order to produce strains with improved yields of specific
metabolites, increase the pathway flux through manipulation of
single or multiple genes

>

A Selection of these genes is not trivial
[ uncharacterized enzyme kinetics
[ complicated network interaction
[ unexpected regulation

A Generation of a set of kinetic models that describe a set of
enzyme over-expression phenotypes that produces increased
levels of L-lysine (known from literature Kazimaet al.)

[ allows for the generation of further targets for testing



Ensemble Modeling

AConstruction of dynamic model s& ¢
algorithm)
[ Span the space of kinetics allowable by thermodynamics
1 overcomes the difficult task of obtaining kinetic parameters
[ Anchored to the same steady state

A Screening process allows for learning from the behavior of
the true system:

[ compari ng model s Gstaperfluxes followimgd st eady
perturbations with experimental data

[ Keeping only models with right predictions

A The retained models converge to an increasingly realistic and
predictive subset



Maodel Phenolypes
After Overexpression

Exparimantaly determined
reference steady slate
(control strain)
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production rate

Summary of literature used for screening phenoty pes.

a
=
2
Initial Ensemble of Models | Retained Models
Same Steady State Bl Match Range of
Different Kinetics g B Expertmental Data
T e, S
i N -l
e
: <D, S——3f
c Ovarenpre=tion e fNELT ;
E | ﬁ E L e o e mm mm s ms mm s =
[ [ !
o o {
2 / T Experimental B
o b\ ' Experdmentally determined Data =
W 4 reference steady state |
; (control strain) I Experimentally
| determined
| sleady slate after _
Time E enzyme tuning Time
-
D e o mm mm ommom———
I {ﬁ] Table 2
=
=
| @

Repeat for 6

Time Screening Steps

e e e e e e e e e - o

- Eventually get a set of models that properly describes the
known enzyme over-expression phenotypes

- This subset is more predictive as the additional data are
used to refine the set of models

Target gene{s) Phenotype Reference
dapA”™ overexpression Kojima et al.
increases 1-lysine production (1996)
rate and yield
rtate kinase dapA”™ & lysC” simultaneous  Kojima et al.
(lysC*) and dapA OVErexXpression increases (1996)
| L=lysine production and yield
[Dihydrodipicolinate redfctase dapA”, lysC, & dapB Kojima et al.
(dapB ), dapA® & lysC* simultaneous overexpression (1996)
! increases
L-lysine production and yield
dapA”, lysC”, dapB, & dapD  Kojima et al.
succinylase{dapD), dapA®, simultaneous overexpression (1996)
lysC*, & dapB increases
L-lysine production and yield
b ep—sinmsimsoieaal dapA”, lysC”, dapB, & dapE Kojima et al.
desuccinylase (dapE), dapA®, simultaneous overexpression (1996)
lysC*, & dapB increases
L-lysine production and yield
dapA”, lysC”, dapB, dapD, & dapE | dapA”, lysC", dapB, dapD, &  Kojima et al.
dapE simultaneous (1996)

OVErex pression
increases 1-lysine production
and yield



Results

A ldentified the next rate -limiting step in L -lysine production

A The final ensemble of models (six genes are over-expressed) were
used to predict three new candidates for over -expression in order
to further improve L -lysine production
[ Anabolic L-lysine pathway
[ In central metabolism
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Directing hypothesis-driven discovery

A Metabolic GENRES enable integration of large datasets for analysis
of whole -cell phenotypes, and when wielded effectively, these
analyses can be targeted to answer profound questions in biology

A Some biological questions investigated using metabolic GENREs
iInvolve cellular -level phenomena difficult to approach without a
whole-cell model of metabolism

B



Activity motifs reveal principles of timing
In transcriptional control of the yeast
metabolic network  (chechik et al. 2008)

A The transcriptional timing of metabolic genes was studied using
time courses of transcriptomic and proteomic data, as well as
protein binding affinity data from ChlIPchip assays

A This analysis suggested that under relatively static environmental
conditions, metabolism is primarily controlled through protein -
| evel reqgulation (O0hierarchical ¢

A While during times of environmental change, transcriptional
control guides metabolic function



Activity motifs

A Activity motifs describes a specific pattern of functional data

[ ordered timing of activation of the corresponding genes (Onsets of
transcriptional responses)

[ ordered binding affinity to a transcription factor
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A Activity motifs can be identified by assessing the enrichment of
activity patterns given the network wiring structure



Timing activity motifs

A Expression profiles of particular biological condition A transcription
timing properties A wiring patterns A timing activity motif
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A Enriched motifs uncover the principles of the
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[ Forward activation to produce metabolic compounds efficiently

[ Backward shutoff to rapidly stop production of a detrimental
product

[ Synchronized activation for co -production of metabolites required
for the same reaction



Mechanism that can underlie the extensive
ordered timing of transcriptional control

A Having differences in affinity of a common transcription factor for
the promoters of various genes in the pathway can result in
different transcription onsets

AChlIRchi p6s continuous values can be¢
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Cont.

A Timing activity motifs significantly overlap with binding activity
motifs

A Tuning of transcription factor binding affinities may play a
significant role in the temporal regulation of metabolic
transcription



E————
Protein timing activity motifs

A The levels of active enzymes are only partially determined by
MRNA levelsd general high correlation, with significant intergene
variation
[ Multiple subsequent regulatory control
[ Protein half -life

A Time course of protein levels were measured for genes
participating in timed motifs after exposure to DTT (induces
expression activation)

1 The level of protein product roughly resembles a scaled, time -delayed
integral of its MRNA level

1 Onset time of protein activation in good correlation with the onset time of
the mRNA activation
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Interrogation of multi -species relationships

oln many cases it iIs through
species that the most interesting phenotypes
emer geo

A Interactions between species
A Interactions between different cell types

These understandings may help in bridging the
phenotype-genotype gap

3
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Metabolic modeling of a mutualistic microbial
community

(Stolyar eta |, 2007)

A Producing and analyzing the first multispecies stoichiometric
metabolic model

A Prediction of several ecologically relevant characteristics

D. vulgaris ) M. maripaludis
[ o2
Lactate Fc;mato
co, CH,

Acetate




A A three compartment model:
[ D. vulgaris metabolic model
[ M. maripaludis metabolic model
[ culture medium
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Network property discovery

oComplex cellul ar networ ks ¢
phenomena that would be undetectable by
reductioni st approachesbo

A Existence of loops

A Optimal pathway usage
A Pathway redundancy

A Metabolite connectivity
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Investigating the metabolic capabilities of
Mycobacterium tuberculosis H 37Rv using the in
silico strain INJ 661 and proposing alternative drug

targets
(Jamshidi and Palsson 2007)
A the emergence of multi -drug resistant (MDR) strains of tuberculosis
hails the need to develop additional medications for treatment
A Using flux coupling analysis in the context of know drug targets
they proposed new alternative, but equivalent drug targets

A Single enzyme drug targets actually knock out complete pathways

Terminating the activity of any other enzyme in that pathway
should have the same effect
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Exploring evolutionary relationships

A Investigating functional evolution of metabolic and
regulatory networks

A Deciphering the adaptive properties underlying the
structure and function of metabolic networks




In Silico Design and Adaptive Evolution of Escherichia

coli for Production of Lactic Acid
(Fong et al, 2005)

A Strain design for metabolite overproduction - OptKnock

A Adaptive evolution of the engineered strains can lead to improved
production capabilities

maximize bioengineering objective
(through gene knockouts)

subject to imaximize cellular objective
(over fluxes)
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Results
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Current status of genome-scale metabolic
reconstructions



